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Intel® Data Analytics Acceleration Library (DAAL) is a library from Intel that aims to provide the 
users of some highly optimized building blocks for data analytics and machine learning 
applications. The latest version is the 2017 beta version that is already made open source on the 
Github homepage[^https://github.com/01org/daal]. For each of its kernel, DAAL has three modes: 

• A Batch Processing mode is the default mode that works on an entire dataset that fits into the 
memory space of a single node. 

• A Online Processing mode works on the blocked dataset that is streamed into the memory 
space of a single node. 

• A Distributed Processing mode works on datasets that are stored in distributed systems like 
multiple nodes of a cluster. 

Nowadays, many data analytics and machine learning problems contain millions or billions of 
training data and parameter data, it is obvious that the Distributed Processing mode is the only 
choice for many applications. Within DAAL's framework, the communication layer of the 
Distributed Processing mode is left to the users, which could be Hadoop, Spark, MPI, or any of the 
user-defined middleware. The goal of our project is thus to fit Harp, a plug-in into Hadoop 
ecosystem, into the Distributed Processing mode of DAAL. Compared to contemporary 
communication libraries, Harp has the advantages as follows: 

• Harp has MPI-like collective communication operations that are highly optimized for big data 
problems. 

• Harp has efficient and innovative computation models for different machine learning 
problems. 

The original Harp project has all of its codes written in Java, which is a common choice within the 
Hadoop ecosystem. The downside of the pure Java implementation is the slow speed of the 
computation kernels that are limited by Java's data management. Since manycore architectures 
devices are becoming a mainstream choice for both server and personal computer market, the 
computation kernels should also fully take advantage of the architecture's new features, which are 
also beyond the capability of the Java language. Thus, a reasonable solution for Harp is to 
accomplish the computation tasks by invoking C++ based kernels from libraries such as DAAL. The 
implementation and the challenges of such an interface between Harp and DAAL will be discussed 
in the following sections. 

Data Structure of Harp and DAAL 

The major roadblock of the interface between Harp and DAAL is their data structures. Harp is 
written in Java while DAAL has most of its codes written in C++. Fortunately, DAAL has already 
provide the users of a Java API, which invokes the C++ codes at low level. Nevertheless, Harp and 
DAAL have different data structures shown in Figure 1. 



 

Figure 1. Data structure of Harp and DAAL 

Harp defines its own three-level data structure. At the top level is its ArrTbale, which extends the 
Table class of Java. At the middle level is the ArrPartition, which owns an identifier and an Array. At 
the low level is the Array that derives from the primitive Array class of Java. Therefore, an ArrTable 
of Harp could contains a substantial number of ArrPartition, and the data resides on non-
consecutive memory space. 

DAAL also has a variety of data structures. In general, it has data source, data dictionary, 
NumericTable, matrix, and so forth. E.g., NumericTable is a major data structure used in DAAL's 
algorithms. NumericTable has many sub-classes such as HomogenNumericTable, AOSNumericTable, 
SOANumericTable. In HomogenNumericTable, the data is stored in consecutive chunks of memory 
space, while the AOSNumericTable has its data stored in non-contiguous memory space. If the users 
use the Java APIs of these data structures, they could also decide whether the data's memory space 
is allocated on the Java side or on the C++ side. There are pros and cons for both of the two sides, 
and we will investigate them in the following sections. 

Because of the different data structures, the interface needs to address the data conversion 
problem, and consequently, will cause additional time overhead. Unless we modify the data 
structures of Harp and DAAL, we can only use some multithreading copy to reduce the conversion 
time overhead. The JNI interface used in DAAL's Java APIs will also give us some challenges that will 
be discussed in the following sections. 

Two Case Studies and Preliminary Results 

We select two algorithms, K-means and Stochastic Gradient Descent (SGD), to test our interface 
implementation. K-means represents the category of computation-intensive problems while SGD 
represents the category of memory-intensive applications. 
For each of them, we will compare the performance of the Harp-DAAL interfaced hybrid codes with 
that of the original pure Java codes. 

Harp 
allreduce function  

• Arguments: Table<P> 

• ArrayTable -> ArrPartition->Array<P> 

• Non-consecutive memory better for 
regroup operation  

Low level Data Structure 

• java.util.Collection 

• flexible and dynamic in size 

• memory managed by JVM 

• allocation non-contiguous 

Harp-DAAL 

Challenge of Data Type 
Conversion 

Convert data from non-
contiguous memory to 

contiguous memory 

DAAL 
DistributedStep1Local 

• HomogenNumericalTable 

• Arguments: double[] 

• contiguous memory mapped to native c 
methods better for MKL kernel 

 

Low level Data Structure 

• C/C++ data structure 

• user-control of memory 

• allocation contiguous 



Harp-DAAL-Kmeans 

The interface between Harp's K-means and DAAL's K-means is quite straightforward. 

 
//----- Harp codes to get pointPartitions ----------------// 
 
//------ start convert data from Harp to DAAL ----------- 
 
HarpDaalParallelConvert converter = new HarpDaalParallelConvert(pointPartitions, pointData, pointPartition
s.size(), pointsPerFile, vectorSize); 
converter.HarpToDaal(); 
 
HarpDaalParallelConvert converter_cen_to_daal = new HarpDaalParallelConvert(cenTable, daalCenData, numCenP
artitions, 0, vectorSize); 
converter_cen_to_daal.HarpCenToDaal(); 
 
//------- End of converting data from Harp to DAAL ----------// 
 
//create the DAAL's data structure  
HomogenNumericTable ntData = new HomogenNumericTable(daalContext, pointData, vectorSize, totalVectors); 
HomogenNumericTable ntCen = new HomogenNumericTable(daalContext, daalCenData, vectorSize, numCentroids); 
 
// compute K-means by DAAL 
DistributedStep1Local kmeansLocal = new DistributedStep1Local(daalContext, Double.class, Method.defaultDen
se, numCentroids); 
 
kmeansLocal.input.set(InputId.data, ntData); 
kmeansLocal.input.set(InputId.inputCentroids, ntCen); 
PartialResult pres = kmeansLocal.compute(); 

HarpDaalParallelConvert is a defined class that uses Java multithreading to copy data from Harp's pointPartition to DAAL's pointData 

In the test, we compiled the codes with the DAAL-2017 released version on Github 
The test of K-means was done by two mappers on a single node of Juliet. 
The test of MF-SGD was done by four mappers on two nodes of Juliet. 

• Harp-Kmeans 

  Origianl implementation of Bingjing, the local computatoin kernel of K-means is written in 
Java multithreading 

• Harp-DAAL-Kmeans 

  Hybrid implementation of Harp with DAAL-2017. The local computation is offloaded to DAAL 
while the communication layer is handled by Harp. There is a group of Java classes dedicated 
to the data type conversion between Harp and DAAL 

The K-means tests used data points where each point is a vector with a length of 10. Each test had 
10 iterations of computing K-means, and each test was repeated by 5 times. Thus, the averaged 
results could remove the influence from the fluctuation of Hadoop JVM's performance. In order to 
investigate the benefits of DAAL to Harp-Kmeans, we divided the tests into two groups. 

• Group 1: The tests fix the number of data points to 500000 while varying the number of 
centroids by 1000, 10000, 100000, respectively. 

• Group 2: The tests fix the number of centroids to 100000 while varying the number of data 
points by 5000, 50000, 500000, respectively. 

The following two graphs show the experiment results: 



  

Figure 2. Test Results of Group 1 Figure 3. Test Results of Group 2 

In Figure 2., we found that the execution time of both Harp-Kmeans and Harp-DAAL-Kmeans 
increase rapidly when we augment the number of centroids. The benefits of DAAL is obvious 
because it saves by 2x to 4x the execution time in average. In Figure 3., Harp-DAAL-Kmeans still 
saves up to 3 times of the execution time compared to Harp-Kmeans. 

Harp-DAAL-SGD 

Matrix Factorization based on Stochastic Gradient Descent 

Matrix Factorization based on Stochastic Gradient Descent (SGD-MF for short) is an algorithm 
widely used in recommender systems. MF-SGD is one of the implemented algorithm within Harp, 
however, DAAL current does not have a MF-SGD kernel. We first implement a MF-SGD kernel inside 
DAAL's framework and then interface it with that of Harp. MF-SGD aims to factorize a sparse matrix 
into two dense matrices named mode W and model H as follows. 

𝑉 = 𝑊𝐻 

Matrix 𝑉 includes both training data and test data, a machine learning inspired kernel with use the 
training data to approximate the model matrices 𝑊 and 𝐻. A standard SGD procedure will update 
the model 𝑊 and 𝐻 when it trains each training data, i.e., an entry in matrix 𝑉 in the following 
formula. 

𝐸𝑖𝑗 = 𝑉𝑖𝑗 −∑𝑊𝑖𝑘

𝑟

𝑘=0

𝐻𝑘𝑗 

𝑊𝑖∗
𝑡 = 𝑊𝑖∗

𝑡−1 − 𝜂(𝐸𝑖𝑗
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𝑡−1) 

𝐻∗𝑗
𝑡 = 𝐻∗𝑗

𝑡−1 − 𝜂(𝐸𝑖𝑗
𝑡−1 ⋅ 𝑊𝑖∗

𝑡−1 − 𝜆 ⋅ 𝐻∗𝑗
𝑡−1) 

Tests on Harp-SGD and Harp-DAAL-SGD 

We implement a MF-SGD module and add it into DAAL-2017's library. Our work has already been 
released on the following Github page: https://github.iu.edu/IU-Big-Data-Lab/DAAL-2017-MF-SGD 



 

Archive of DAAL-MF-SGD on IU's Github 

We also generate an online documentation at https://github.iu.edu/pages/IU-Big-Data-Lab/DAAL-
2017-MF-SGD/ 



 

Online Documentation of DAAL-MF-SGD 

In the test, we refer the original pure-Java implementation as Harp-SGD while the hybrid one with 
DAAL's kernel as Harp-DAAL-SGD. We use two nodes from Juliet cluster located at Indiana 
University Bloomington in our tests. 

Each node has the following CPU information: 

Architecture: x86_64 CPU  
op-mode(s): 32-bit,  
64-bit Byte Order: Little Endian  
CPU(s): 48  
On-line CPU(s) list: 0-47  
Thread(s) per core: 2  
Core(s) per socket: 12  

The memory configuration of Harp on each node is shown as follows: 

Yarn allocates: 128 GBs Each Mapper allocates: 100 GBs 

In the test, we use two datasets. 

1.MovieLens  2.Yahoomusic 

Other configurations and parameters are listed below: 



Total Iteration times: 5  
LearningRate: 0.005  
Lambda: 0.003  
Threads: 40  
Total Mapper 2, Each node has 1 mapper 

 
 

  

Figure 4. Test on MovieLens with 128 

dimensional Feature Vector 

Figure 5. Test on Yahoomusic with 128 

dimensional Feature Vector 

In Figure 4 and 5, we find that, by integrating DAAL's kernel into Harp, the Harp-DAAL-SGD does 
have less execution time than the original Harp-SGD. However, the performance speedup is only 
around 6% for Yahoomusic and 16.5% for MovieLens. As we know, Yahoomusic has a larger data 
size than MovieLens, which indicates that it should have more computation workload. However, the 
speedup brought by DAAL's computation kernel is less effective on large dataset, which requires a 
further investigation. 

By decomposing the execution time into different stages within Harp-DAAL-SGD, we have the 
following pie chart: 

 

Figure 6. Time Ratio of Harp-DAAL-SGD on MovieLens and Yahoomusic 



In Figure 6, we have seen two additional overhead beside computation and data communication 
between distributed nodes (refers to model rotation). 

1.Interfacing Overhead  

2.JNI Overhead 

They all together take up to 25% of the whole execution time. These overheads do not exist at the 
pure-Java implementation of Harp-SGD, they are, actually the side-effect of interfacing two 
languages and two libraries. 

Interface Overhead Between DAAL and Harp 

DAAL and Harp have their own different data abstracts. DAAL is likely to use contiguous allocated 
memory either at native side, or at the heap of Java side. In contrast, Harp uses a Table structure, 
where each of its element is allocated on Java Heap individually. The collective communication 
functions provided by Harp only supports its own Table structure, therefore, when we need to 
transfer data, like the updated model 𝑊 and 𝐻 to other nodes, we have to decompose the 
contiguous table from DAAL into Harp's Table structure. In our Harp-DAAL-SGD implementation, 
we use Java multi-threading to copy data between the two data containers, and the overhead could 
be controlled in large data cases. 

JNI overhead in data transfer 

Another interface overhead is the data transfer between two languages. The model data 𝑊 and 𝐻 
are initially created at the heap space of Java, and DAAL's native kernel could not access them 
directly. In DAAL's Java interface, we have two solutions. 

1.Explicitly allocating data at the native code side in Java programming codes. The data is actually 
allocated at the DirectBuffer of Java, and the memory address of this buffer could be passed to the 
native kernel of DAAL by JNI interface. 

2.Keeping the data at the Java heap side. Each time the native kernel needs to access the data, it will 
callback to the Java side and temporarily create a DirectBuffer for the required data at the native 
code side. 

Since the MF-SGD kernel will usually update the same model data by a multiple times, we find the 
first choice has less time overhead than the second one. Therefore, we pass the model data 𝑊 and 𝐻 
from Heap side to the DirectBuffer before the computation kernels start. After the computation 
finishes, we retrieve the updated model data to the Java heap side for rotation. This two-side data 
transfer contributes a roughly 20% of the total execution time. Java does not have a pointer type as 
that of C/C++, thus, we could not execute the data transfer between DirectBuffer and Heap 
segmentation by segmentation in parallel. With the data size increases, the JNI overhead increases 
accordingly. 

Future Work on Harp-DAAL interface 

The bottleneck of interfacing Harp and DAAL lies on the data transfer between different memory 
space. Although DAAL's kernel runs faster than the Java written computation kernel, we could only 
use small model data because of the transfer overhead. To remove this barrier, we need to do the 
following things: 



• Re-implement the communication function of Harp, making it compatible to DirectBuffer 
memory beside the heap memory 

• Currently DAAL only has homogeneous table that supports buffer implementation. If the 
SOANumericTable can also have such buffer implementation support, we may eliminate the 
data copy from contiguous memory to separated memory space. 

 

Performance Evaluation of DAAL-SGD-MF and Libmf 

Figures 7 and 8 show the comparison of DAAL-SGD-MF and LIBMF. The execution time per iteration 
shows that LIBMF works faster than DAAL-SGD-MF, however, LIBMF has a worse convergence than 
DAAL. 

We also observe that LIBMF quickly drops out of performance when it runs more than 64 threads, 
which is the number of physic cores (threads) of our KNL. These differences and phenomena come 
from the fact that, although both of LIBMF and DAAL follow the same standard SGD algorithm for 
matrix factorization, they adopt different computation model (synchronization pattern) and multi-
threading programming paradigm. 

  

Figure 7.Time per iteration and Threads 

scalability 

Figure 8. Convergence by Timeline 

Model Rotation vs. Asynchronous communication 

LIBMF uses the model B in Zhang and Peng's classification, which rotates a portion of the model 
data among parallel computing elements (e.g., threads in shared memory, or processes in 
distributed memory). This strategy aims to reduce the confliction of updating the same data by 
different parallel computing elements. The downside is the lack of load balance for some matrices 
where the nonzero entries per column/row is significantly unbalanced. In contrast, DAAL-SGD-MF 
chooses the model D in Zhang and Peng's classification, where each parallel computing elements 
freely updates the global model and uses stale local model. If the matrix is very sparse, and the 
workload for each thread is very light, such conflict of updating the same model data by different 
parallel computing elements rarely happens. The upside of model D is that it could achieve a good 
load balance if the parallel computing elements are well scheduled. 



Thread based Scheduling vs. Task based Scheduling 

LIBMF uses a raw pthread based multi-threading programming, the developers write their own 
threads scheduler that follows the model rotation strategy and a dynamic threads scheduling. 
DAAL-SGD-MF chooses the Task based scheduling, which is accomplished by Intel's TBB library. 
Though both of them has a dynamic thread scheduling policy, there are some fundamental 
differences between thread based scheduling and tasks based scheduling. According to an 
explanation provided by Intel. 

The threads you create with a threading package are logical threads, which map onto the physical 
threads of the hardware. For computations that do not wait on external devices, highest efficiency 
usually occurs when there is exactly one running logical thread per physical thread. Otherwise, 
there can be inefficiencies from the mismatch. 

This explains the drop down of LIBMF when it uses more than the number of physic threads. DAAL-
SGD-MF, thanks to the task-based scheduling by TBB, could take advantage of hyper threading and 
achieve a higher CPU/Threads utilization than that of LIBMF. (See Figure 9) 

 

Figure 9. CPU utilization of DAAL-SGD-MF 

 

Figure 10. CPU utilization of LIBMF 

L2 cache hit Rate and Memory Access Latency 

From a detailed profiling by VTune, we find that both of LIBMF and DAAL-SGD-MF own a relatively 
low L2 cache hit rate, which are 0.541 and 0.404, respectively. This low cache hit rate suggests that 
the standard SGD's random memory access pattern makes the data hard to be cached. If a L2 cache 
miss happens, the tiles in KNL will go through a long path to query the L2 cache of other tiles and 
finally fetch the data from memory. This substantial data access latency is brought either by the 
access latency of memory, or by the latency time spent on the on-die communication among tiles. 
According to the bandwidth utilization histogram by VTune (See Figures 11 and 12), it is clear that 
both of LIBMF and DAAL-SGD-MF do not fully utilize the provided bandwidth (around 400 Gbs/s) 
of MCDRAM. Thus, the latency of accessing memory should be low, and we suggest the major 
barrier of the latency performance comes from the poor data locality of tiles on KNL. This 
conclusion inspires us of using the SNC mode of KNL, which is declared to own the best data locality 
of threads on sub-NUMA nodes among all the clustering modes of KNL. 



 

Figure 11. Bandwidth Utilization of LIBMF 

 

Figure 12. Bandwidth Utilization of DAAL-SGD-MF 

 

SGD-MF Optimization on KNL 
Matrix Factorization is one of the best techniques to solve a collaborative filtering problem in order 
to build a recommender system. It is a typical big data analysis algorithm, which deal with both 
large volume of input data (user-item ratings) and large volume of model(user-latent and item-
latent matrix).  

Libmf1 is the state-of-art implementation on multi-threading and share memory platform using SGD 
solver for the matrix factorization problem. It builds up by two basic ideas. First, it achieves free-of-
conflicts model updates by splitting the input matrix into blocks and using a dynamic scheduler to 
select blocks without conflicts for the running threads. Second, it re-organizes the processing order 
of the training points into a more cache friendly way, with a compromise of the randomness 
required by the algorithm. It’s always a trade-off between efficiency and effectiveness. 

In this report, we investigate the performance issue of a sgd-mf trainer on the new KNL 
architecture by using libmf. We try to find out the bottleneck of this kind of application and possible 
solutions. Currently, it has the following sections: 

 Performance Evaluation 

                                                        

1 Libmf, https://www.csie.ntu.edu.tw/~cjlin/libmf/ 



 Bottleneck Analysis 

 Optimization 

 Optimization By Reorganize Memory Access Order: Tiling 
 Optimization By Reorganize Memory Layout: Nopermute 
 Optimization By Repeat Computation on Training Points: Repeat 
 Optimization By Decrease Memory Access Latency: NUMA 

 

Performance Evaluation of Haswell vs. KNL 
Experiment setting:  
Run libmf on the standard yahoomusic dataset, with different thread number under a fixed 
eta(learning rate), two platform(hsw72, knl), two vectorization optimization(avx512 on/off knl & 
avx on/off hsw72): 

mf-train -l2 1 -k 128 -r 0.0001 -t 10 -s #threadnum -p yahoomusic-test.mm yahoomusic-train.mm 

KNL runs with mcdram in flat mode, all datasets are allocated into mcdram. 

 

Figure 13 Performance Evaluation of Libmf 

According to Figure13, we have the following observations from this experiment: 
A). Avx512 

a) On knl, avx512 runs about 5x faster than nosse (vectorization off) 
b) On hsw72, avx runs about 1.6x faster than nosse(vectorization off) 
 

B). Hyper-Threading 
a) Hyper-threading brings no gain on both knl and hsw72 



b) It goes even worse when vectorization on. 
 
C). Speedup 

a) On hsw72, speedup is below the linear, e.g., 21.7 at S32 (thread=32) 
b) On Knl, speedup is near (super) linear, e.g., 61 at S64. 
It seems libmf has better scalability on knl. But the very slow performance of one thread on knl 
can contribute to this. 
 

D). Performance 
a) Each core of Hsw72 is more powerful than the counter part of KNL 
b) But as in Figure 14, the advantage of HSW decreases when more threads are used. Later, 

we find out that the memory bandwidth on HSW becomes the bottleneck. 

 

Figure 14 Performance Comparison Between HSW and KNL 

c) KNL finally runs faster 

KNL get best performance at 1.5(s/iter) on S64, which is about 1.27x faster than Hsw72’s 
best preformance of 1.9 on S32.  

 

Bottleneck Analysis 
Performance analysis with VTUNE shows that this application has high l2-cache miss rate and low 
FPU utilization. (see Appendix)  

L2 hit rate 0.541 

L2 miss bound 1.00 

FPU utilization upper bound 10.7% 

Bandwidth Utilization MCDRAM flat ~180GB/s 

SIMD compute-to-l2 access ratio 24.810 

There is a low compute-to-memory load ratio, thus the power of FPU can not be delivered fully.  

Then we try different ways to optimize, either to increase the l2 hit rate by reorganize the memory 
access order or decrease the latency of memory access by utilize the NUMA topology, or increase 
the computation for each memory load by modifying the algorithm.  
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Optimization By Reorganize Memory Access Order: Tiling 
Tiling, a better organization of memory access, can be used to make the memory access more cache 
friendly, thus may ameliorate this kind of memory-bounded problem.  

There are different tiling schemes: a) row-based, b)col-based, c)z-filling, (cache oblivious filling). 
Libmf itself split the input training data matrix into blocks, and do partial random training on the 
training points by select blocks randomly but select points inside one block with a special order. By 
default, it uses a row-based order. 

 

First, we test different tiling schemes on libmf with one thread and one block setting, avx512 open. 

problem[m=1000990, n=624961,nnz=252800275] 

 

Figure 15 Performance on Different Tiling Scheme 

Z filling is about 1.27x faster than non-tiling. 

VTune analysis on tiling: 

 Non-tiling Z-filing 

 FPU Utilization Upper Bound: 9.0% 

    GFLOPS Upper Bound: 3.742 

        Scalar GFLOPS Upper Bound: 0.009 

        Packed GFLOPS Upper Bound: 3.732 

FPU Utilization Upper Bound: 12.3% 

    GFLOPS Upper Bound: 5.083 

        Scalar GFLOPS Upper Bound: 0.006 

        Packed GFLOPS Upper Bound: 5.077 
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Performance on Different Tiling Scheme 



 Back-End Bound: 45.5% 

    L2 Hit Bound: 0.160 

    L2 Miss Bound: 1.000 

    MCDRAM Flat Bandwidth Bound: 0.0% 

    DRAM Bandwidth Bound: 0.0% 

Back-End Bound: 50.4% 

    L2 Hit Bound: 0.233 

    L2 Miss Bound: 1.000 

    MCDRAM Flat Bandwidth Bound: 0.0% 

    DRAM Bandwidth Bound: 0.0% 

 CPU Utilization: 0.4% 

    Average CPU Usage: 0.996 Out of 256 logical 

CPUs 

CPU Utilization: 0.4% 

    Average CPU Usage: 0.996 Out of 256 

logical CPUs 

There is minor improvement on L2 hit count, subsequently a small improvement on FPU utilization. 
But it does not change the L2 Miss Bound anyway. Furthermore, the benefits from z-filing will 
decrease when the thread number increases, for this application deals with a sparse matrix and 
there are less chances to reuse the data loaded when the blocks size get smaller. 

Optimization By Reorganize Memory Layout: Nopermute 
Applying permutation on the rows and columns of the training matrix is a standard pre-process 
step in Libmf, which can make the load more balance among the threads. However, the randomness 
from permutation make the cache harder to work efficiently. 

Here we try skip the permutation in preproces, and on the contrary, we reorder the rows and 
columns by their frequency of non-zero items in each block. And following the idea of partial 
randomness in libmf, we rely on the dynamic scheduler randomly select blocks to make the 
converge rate not deteriorate much comparison with the totally random training point selection. 

Thread=64, Blocks=129, Iternum=10 

 With Permutation Nopermute(ms) Nopermute(ms)+z-filing 

TrainTime/Iter(ms) 1490  1280 

Test RMSE 26.1194  26.1604 

It can achieve about 10% times faster by nopermute, but not much. 

Optimization By Repeat Computation on Training Points: Repeat 
Here we do repeat computation on a chunk of training data to increase the data reuse and the 
computation-to-memload ratio. 

Parameters: 

chunksize How many points will be retrained as a group/chunk 

repeatcnt How many times the chunk data will be retrained 

VTune Profiling 

S64N0,xtile=3, repeat=3,chunksize=16 S64N0,xtile=3 

no repeat 

CPU Utilization: 24.8% 

    Average CPU Usage: 63.546 Out of 256 logical CPUs 

CPU Utilization: 21.4% 

    Average CPU Usage: 54.850 Out of 256 logical CPUs 

Back-End Bound: 42.5% Back-End Bound: 61.4% 



    L2 Hit Bound: 0.088 

    L2 Miss Bound: 0.640 

    MCDRAM Flat Bandwidth Bound: 0.0% 

    DRAM Bandwidth Bound: 0.0% 

    L2 Hit Bound: 0.148 

    L2 Miss Bound: 1.000 

    MCDRAM Flat Bandwidth Bound: 0.0% 

    DRAM Bandwidth Bound: 0.0% 

FPU Utilization Upper Bound: 15.3% 

    GFLOPS Upper Bound: 405.943 

        Scalar GFLOPS Upper Bound: 0.450 

        Packed GFLOPS Upper Bound: 405.493 

FPU Utilization Upper Bound: 10.5% 

    GFLOPS Upper Bound: 239.319 

        Scalar GFLOPS Upper Bound: 0.206 

        Packed GFLOPS Upper Bound: 239.113 

Top 5 hotspot loops (functions) by FPU usage  

Function CPU Time FPU Utilization Upper Bound Loop Characterization 

[Loop@0x41eeb2 in mf::(anonymous namespace)::SolverBase::run]

 1512.121s 7.7%  

[Loop@0x41f1a0 in mf::(anonymous namespace)::SolverBase::run]

 1268.951s 25.2%  

[Loop@0x41efc5 in mf::(anonymous namespace)::SolverBase::run]

 1233.001s 2.2%  

mf::(anonymous namespace)::Block::move_next 611.510s 21.9%  

[Loop@0x41f1f8 in mf::(anonymous namespace)::SolverBase::run] 607.590s

 41.1%  

[Others] 120.650s N/A* 

Top 5 hotspot loops (functions) by FPU usage  

Function CPU Time FPU Utilization Upper Bound Loop Characterization 

[Loop@0x41e375 in mf::(anonymous namespace)::SolverBase::run]

 1133.191s 1.0%  

[Loop@0x41e262 in mf::(anonymous namespace)::SolverBase::run] 495.050s

 8.7%  

[Loop@0x41e550 in mf::(anonymous namespace)::SolverBase::run] 424.420s

 23.9%  

[Loop@0x41e5a8 in mf::(anonymous namespace)::SolverBase::run] 196.480s

 40.8%  

mf::(anonymous namespace)::Block::move_next 88.750s 9.6%  

[Others] 114.550s N/A* 

From the VTUNE report, the Repeat technique can really increase the FPU utilization and decrease 
the l2 miss bound in the back-end.  

TestRMSE  iter avg time(ms) Total(ms) speedup 
chunksizeXrep
eatcnt 

24.1733 17 1773 30141 1  

 9 1961 17649 1.707802142 8x1 

 6 2460 14760 2.042073171 8x2 

 5 3088 15440 1.952137306 8x3 

This table shows the speedup by “repeat” to converge to the same level in training with different 
repeatcnt settings.  

But another group experiments with different chunksize settings show little differences in terms of 
performance. It means, we can not benefit more from repeat on a larger chunk of points than repeat 
on a single point. The problem here is that repeat on a single point actually has little differences 
with doubling the learning rate parameter. Thus, the repeat technique doesn’t work effectively on 
such kind of sparse problem. 

Optimization By Decrease Memory Access Latency: NUMA 
Because this application is memory-bound with high l2-miss rate, we can try to decrease the 
memory access latency by utilize the topology information of the numa architecture. 

Set KNL into SNC-4 mode, and run 4 processes in this distributed mode by model rotation. 



Performance Evaluation of Harp-SGD-MF on KNL 

Learning parameters 
Yahoomusic Dataset 
Number of Training Points 252800275 
Number of Rows: 1000990 
Number of columns: 624961 
Number of Dimensions: 100 
Lambda: 1 
Epsilon: 0.0001 

The results are shown in the chart below. There is (super) linear speedup on 1, 8, 16 and 32 
threads. However, the speedup couldn’t grow when the number of threads is higher than 32 
because the computation time doesn’t change much. 

 

Figure 16 Performance Evaluation of Harp SGD for MF 

 

Appendix 
VTUNE Analysis Report 
Libmf Parameters 

Thread number: 64 
K: 128 
Lambda: 1 
Eta: 0.0001 
AVX512: on 
MCDRAM: on 

VTune--General info 
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